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Abstract. In this paper we consider vector quasi-variational inequality problems over product
sets (in short, VQVIP). Moreover we study generalizations of this model, namely problems
of a system of vector quasi-variational inequalities (in short, SVQVIP), generalized vector
quasi-variational inequality problems over product sets (in short, GVQVIP) and problems of
a system of generalized vector quasi-variational inequalities (in short, SGVQVIP). We show
that every solution of (VQVIP) (respectively, (GVQVIP)) is a solution of (SVQVIP) (respec-
tively, (SGVQVIP)). By defining relatively pseudomonotone and relatively maximal pseudo-
monotone maps and by employing a known fixed point theorem, we establish the existence
of a solution of (VQVIP) and (SVQVIP). These existence results are then used to derive the
existence of a solution of (GVQVIP) and (SGVQVIP), respectively, The results of this paper
extend recent results in the literature. They are obtained in a more general setting.

Key words: Generalized vector quasi-variational inequalities, relatively maximal pseudo-
monotone maps, relatively pseudomonotone maps, systems of generalized vector quasi-vari-
ational inequalities, systems of vector quasi-variational inequalities, vector quasi-variational
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1. Introduction and Model Formulation

In recent years problems of a system of variational inequalities have been
studied by several researchers. Such models are related to traffic equilib-
rium problems, spatial equilibrium problems, Nash equilibrium problems
and general equilibrium programming problems. See for example [4–7, 9,
13, 16, 17] and references therein.

To use variational inequalities in the solution of Debreu type equilibrium
problems [10], problems of a system of quasi-variational inequalities have
been studied in [3, 21, 22] for example.

Inspired by the study of vector variational inequalities by Giannessi [12],
systems of vector variational inequalities with their applications have been
investigated in [1, 4, 5] and in references therein.
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Very recently variational inequalities over product sets have been studied
which involve relatively (generalized) monotone maps; see [1, 2, 13] and ref-
erences therein.

In this paper we consider vector quasi-variational inequality problems over
product sets (in short, VQVIP) and problems of a system of VQVIP (in short,
SVQVIP). We show that every solution of (VQVIP) is a solution of (SVQVIP).
We define the concept of a relatively maximal pseudomonotone map and prove
the existence of a solution of (VQVIP) and (SVQVIP) for these maps. As a
consequence we derive an existence result for a solution of (VQVIP) and (SVQ-
VIP) for relatively pseudomonotone hemicontinuous maps. We also consider
generalized vector quasi-variational inequality problems over product sets (in
short, GVQVIP) and problems of a system of generalized vector quasi-vari-
ational inequalities (in short, SGVQVIP), that is (VQVIP) and (SVQVIP) for
multivalued maps, respectively. By adopting the technique by Yang and Yao [20]
we derive the existence of a solution of (GVQVIP) and (SGVQVIP) by using
the existence results for a solution of (VQVIP) and (SVQVIP), respectively.
The results of this paper extend recent results in the literature. They are derived
in a more general setting than before.

Let I ={1,2, . . . ,m} be a finite index set. For each i ∈ I , let Xi be a real
topological vector space and Ki a nonempty convex subset of Xi . Set

X =
∏

i∈I

Xi and K =
∏

i∈I

Ki (1)

so that for each x ∈X we have x = (xl : i ∈ I ) where xi ∈Xi . Let Y be a real
topological vector space with a partial order induced by a proper, closed
and convex cone with int C �=∅ where int C denotes the topological interior
of C in Y . For each i ∈ I let fi:K →L(Xi, Y ) be a map and define f (x)=
(fi(x))i∈I for all x ∈K, where L(Xi, Y ) denotes the space of all continuous
linear functions from Xi to Y . For each i ∈ I , let Ai : K → 2Ki be a mul-
tivalued map with nonempty convex values. We define a multivalued map
A: K → 2K by A(x) = ∏

i∈I Ai(x) for all x ∈ K where 2k denotes the fam-
ily of all subsets of K. We consider the following vector quasi-variational
inequality problem over the product set K:

(VQVIP)

{
findx̄ ∈K such that x̄ ∈A(x̄) and∑
i∈I

〈fi(x̄), yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I. (2)

The following problem can be termed a Minty type vector quasi-variational
inequality problem over the product set K:

(MVQVIP)

{
find x̄ ∈K such that x̄ ∈A(x̄) and∑
i∈I

〈fi(y), yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I. (3)
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We also consider the following problem of a system of vector quasi-vari-
ational inequalities:

(SVQVIP)
{

find x̄ ∈K such that x̄ ∈A(x̄) and
〈fi(x̄), yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I.

(4)

The (SVQVIP) can be used as a tool to prove the existence of a solution
of Debreu type equilibrium problems for vector-valued functions.

If for each i ∈ I,Ai(x) = Ki for all x ∈ K, then (SVQVIP) reduces to
the problem of a system of vector variational inequalities (in short, SVVIP).
Existence results for a solution of (SVVIP) are established in [4]. As an
application of these results, the existence of a solution of Nash equilibrium
problems for vector-valued functions [21] is also derived. Below the solu-
tion sets of (VQVIP), (MVQVIP) and (SVQVIP) will be denoted by Ks,K

m
s

and Kss , respectively.
In case fi (i ∈ I ) is a multivalued map, (VQVIP) and (SVQVIP) are

called generalized vector quasi-variational inequality problems over product
sets and problems of a system of generalized vector quasi-variational inequal-
ities, respectively. More precisely, for each i ∈ I let Fi : K → 2L(Xi,Y ) be a
multivalued map with nonempty values and define F(x)= (Fi(x))i∈I for all
x ∈K. We consider the following problems:

(GVQVIP)

{
find x̄ ∈K and ū∈F(x̄) such that x̄ ∈A(x̄) and∑
i∈I

〈ūi , yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I (5)

where ui is the ith component of u;

(SGVQVIP)
{

find x̄ ∈K and ū∈F(x̄) such that x̄ ∈A(x̄) and
〈ūi , yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I.

(6)

where ui is the ith component of u. The solution sets of (GVQVIP) and
(SGVQVIP) are denoted by K

g
s and K

g
ss , respectively.

2. Preliminaries and Basic Results

DEFINITION 2.1. Let K and X be defined as in (1). A family {fi}i∈I of
maps fi :K →L(Xi, Y ) is said to be

(i) relatively pseudomonotone if for all x, y ∈K we have

∑

i∈I

〈fi(x), yi −xi〉 /∈−intC ⇒
∑

i∈I

〈fi(y), yi −xi〉 /∈−intC;
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(ii) relatively maximal pseudomonotone if it is relatively pseudomonotone
and for all x, y ∈K we have

∑

i∈I

〈fi(z), zi −xi〉 /∈−intC ∀z∈]x, y]⇒
∑

i∈I

〈fi(x), yi −xi〉 /∈−intC

where zi is the ith component of z, ]x, y] = ∏
i∈I ]xi, yi ] and ]xi, yi ]

denotes the line segment joining xi and yi but not containing xi .

DEFINITION 2.2. A family {fi}i∈I of maps fi:K →L(Xi, Y ) is said to be
hemicontinuous if for all x, y ∈K and λ∈ [0,1] the mapping λ 	→∑

i∈I 〈fi(x +
λz), zi〉 with zi =yi −xi is continuous, where zi is the ith component of z.

PROPOSITION 2.1. If the family {fi}i∈I of maps fi : K → L(Xi, Y ) is
hemicontinuous and relatively pseudomonotone, then it is relatively maximal
pseudomonotone.

Proof. Let {fi}i∈I be hemicontinuous. Assume that for all x, y ∈K

∑

i∈I

〈fi(z), zi −xi〉 /∈−intC, ∀z∈ ]x, y]

where zi is the ith component of z. Since Y \ (−intC) is a cone, we have

∑

i∈I

〈fi(x +λ(y −x)), yi −xi〉 /∈−intC, ∀λ∈ (0,1].

By hemicontinuity of {fi}i∈I we have

∑

i∈I

〈fi(x), yi −xi〉 /∈−intC.

Hence {fi}i∈I is relatively maximal pseudomonotone.

The following example shows that the converse of the above lemma is
not true in general.

EXAMPLE 2.1. Let f : R→R be defined as

f (x)=
{

0 if x <0
1 if x �0.

Then f is relatively maximal pseudomonotone, but not hemicontinuous.
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LEMMA 2.1. Every solution of (VQVIP) is a solution of (SVQVIP), that
is Ks ⊆Kss .

Proof. Let x̄ ∈ K be a solution of (VQVIP). Take arbitrary points xi ∈
Ai(x̄) for all i ∈I . Then x = (xi : i ∈I )∈A(x̄). Clearly (3) holds for any point
y which is defined by yi =xi for an arbitrarily fixed i ∈ I and yj = x̄j for all
j �= i since y ∈A(x̄). Now substituting y in (3) yields (5) after taking i to
be 1,2, . . . ,m sequentially. Thus x̄ ∈K is a solution of (SVQVIP).

LEMMA 2.2. If the family {fi}i∈I of maps fi : K → L(Xi, Y ) is relatively
maximal pseudomonotone and for each i ∈ I,Ai is nonempty and convex-
valued, then Ks =Km

s .
Proof. Let x̄ ∈K be a solution of (MVQVIP). Then x̄ ∈A(x̄) and

∑

i∈I

〈fi(y), yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I.

Since for each i ∈ I,Ai(x̄) is convex, we have ]x̄i , yi ] ⊂Ai(x̄),∀i ∈ I. There-
fore

∑

i∈I

〈fi(z), zi − x̄i〉 /∈−intC, ∀zi ∈ ]x̄i , yi ], i ∈ I.

By relatively maximal pseudomonotonicity of {fi}i∈I we have
∑

i∈I

〈fi(x̄), yi − x̄i〉 /∈−intC, ∀yi ∈A(x̄), i ∈ I.

Hence x̄ ∈K is a solution of (VQVIP).
By relatively pseudomonotonicity of {fi}i∈I we have Ks ⊆ Km

s . Hence
Ks =Km

s .

From Proposition 2.1 and Lemma 2.2 we have the following result.

LEMMA 2.3. If the family {fi}i∈I of maps fi : K →L(Xi, Y ) is hemicontin-
uous and relatively pseudomonotone and for each i ∈ I,Ai is nonempty and
convex-valued then Ks =Km

s .

DEFINITION 2.3 (11). Let E be a topological space. A subset D of E is
said to be compactly open (respectively, compactly closed) in E if for any
nonempty compact subset L of E,D∩L is open (respectively, closed) in L.

REMARK 2.1. (a) It is clear from the above definition that every open
(respectively, closed) set is compactly open (respectively, compactly closed).
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(b) The union or intersection of two compactly open (respectively, com-
pactly closed) sets is compactly open (respectively, compactly closed).

We shall use the,following fixed point theorem due to Chowdhury and
Tan[8].

THEOREM 2.1. Let K be a nonempty convex subset of a topological vec-
tor space X (not necessarily Hausdorff ) and S,T :K →2K multivalued maps.
Assume that the following conditions hold:

(i) For all x ∈K,S(x)⊆T (x).
(ii) For all x ∈K,S(x) �=∅.
(iii) For all x ∈ K, T(x) is convex.
(iv) For all y ∈K,S−1(y) :={x ∈K :y ∈S(x)} is compactly open.
(v) There exist a nonempty, closed and compact subset D of K and ỹ ∈ D

such that K\D ⊂S−1(ȳ).

Then there exists x̄ ∈K such that x̄ ∈T (x̄).

3. Existence of Solutions of (VQVIP) and (SVQVIP)

Throughout the remainder of the paper, unless otherwise specified, we
assume that for each i ∈ I,Ai :K →2ki is a multivalued map with nonemp-
ty and convex values and for all yi ∈Ki,A

−1
i (yi) is compactly open in K.

We define a multivalued map A:K →2K by A(x)=∏
i∈I Ai(x) for all x ∈K

such that the set F ={x ∈K :x ∈A(x)} is compactly closed.

THEOREM 3.1. For each i ∈ I let Xi be a real topological vector space,
Y and C be the same as defined above, Ki a nonempty convex subset
of Xi,K = ∏

i∈I Ki and {fi}i∈I a relatively maximal pseudomonotone family
of maps. Assume that there exist a nonempty, closed and compact set D of
K and ȳ ∈ D such that

∑
i∈I 〈fi(x), ỹi − xi〉 ∈ −int C for all x ∈ K\D with

ỹ ∈ A(x). Then the solution set Ks of (VQVIP) is nonempty. Furthermore
(SVQVIP) has a solution.

Proof. For each x ∈K define two multivalued maps P,Q:K →2K by

P(x)=
{
y ∈K :

∑

i∈I

〈fi(y), yi −xi〉∈−intC
}

and

Q(x)=
{
y ∈K :

∑

i∈I

〈fi(x), yi −xi〉∈−intC
}
.
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Then clearly for each x ∈K,Q(x) is convex. By relative pseudomonotonic-
ity of {fi}i∈I we have P(x)⊆Q(x) for all x ∈K.

For each y ∈K the complement of P −1(y) in K is

[P −1(y)]c =
{
x ∈K :

∑

i∈I

〈fi(y), yi −xi〉 /∈−intC
}

is closed in K and hence P −1(y) is open in K. Therefore P −1(y) is com-
pactly open.

Since for each i ∈ I and for all x ∈ K,Ai(x) is nonempty and convex,
we have A(x)=∏

i∈I Ai(x) is nonempty and convex. Also, since for all yi ∈
Ki,A

−1(y)=⋂
i∈I A−1

i (yi) and A−1
i (yi) is compactly open for each i ∈I and

for all yi ∈Ki , we have A−1(y) is compactly open in K for all y ∈K.
Now we define two other multivalued maps S,T :K →2K by

S(x)=
{

A(x)∩P(x), if x ∈F
A(x), if x ∈K\F

and

T (x)=
{

A(x)∩Q(x), if x ∈F
A(x), if x ∈K\F

Then for all x ∈K,T (x) is convex and S(x)⊆T (x).
Since for each y ∈K,A−1(y),P −1(y) and K\F are compactly open and

for all y ∈K

S−1(y)= (A−1(y)∩P −1(y))∪ ((K\F)∩A−1(y))

(see the proof of Lemma 2.3 in [11]), we have S−1(y) is compactly open.
Now assume to be contrary that for each x ∈F,A(x)∩P(x) �= ∅. Then for
each x ∈K,S(x) �=∅. Hence all the conditions of Theorem 2.1 are satisfied.
Therefore there exists x∗ ∈ K such that x∗ ∈ T (x∗). From the definition of
F and T we have {x ∈K :x ∈T (x)}⊆F . Therefore x∗ ∈F and x∗ ∈A(x∗)∩
Q(x∗) and in particular

∑
i∈I 〈fi(x

∗), x∗
i −x∗

i 〉= 0∈−int C, a contradiction.
Hence there exists x̄ ∈F such that A(x̄)∩P(x̄)=∅, that is x̄ ∈A(x̄) and

∑

i∈I

〈fi(y), yi −xi〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I.

By Lemma 2.2 x̄ ∈Ks . It follows from Lemma 2.1 that x̄ ∈K is a solution
of (SVQVIP).

REMARK 3.1. In Theorem 3.1 we have not assumed any kind of continu-
ity condition.
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COROLLARY 3.1. For each i ∈ I let Xi be a real topological vector space,
Y and C be the same as defined above, Ki a nonempty convex subset of
Xi,K =∏

i∈I Ki and {fi}i∈I a hemicontinuous and relatively pseudomonotone
family of maps. Assume that there exist a nonempty, closed and compact set
D of K and ỹ ∈ D such that

∑
i∈I 〈fi(x), ỹi − xi〉 ∈ −intC for x ∈ K\D with

ỹ ∈ A(x). Then the solution set Ks of (VQVIP) is nonempty. Furthermore
(SVQVIP) has a solution.

4. Existence of Solutions of (GVQVJP) and (SGVQVIP)

In this section we adopt the technique of Yang and Yao [20] to derive exis-
tence results for a solution of (GVQVIP) and (SGVQVIP) with help of the
results of Section 3.

LEMMA 4.1. Every solution of (GVQVIP) is a solution of (SGVQVIP),
that is K

g
s ⊆K

g
ss .

DEFINITION 4.1. Let K and X be as defined in (1). A family {Fi}i∈I of
multivalued maps Fi :K →2L(Xi,Y ) is said to be

(i) relatively pseudomonotone if for all x, y ∈ K and for all u ∈ F(x), v ∈
F(y) we have

∑

i∈I

〈ui, yi −xi〉 /∈−intC ⇒
∑

i∈I

〈vi, yi −xi〉 /∈−intC

where ui is the ith component of u;
(ii) relatively maximal pseudomonotane if it is relatively pseudomonotone

and for all x, y ∈K and for all u∈F(x) we have

∑

i∈I

〈wi, zi −xi〉 /∈−intC ∀wi ∈Fi(z), i ∈ I and z∈ ]x, y]

⇒
∑

i∈I

〈ui, yi −xi〉 /∈−intC

where zi , is the ith component of z;
(iii) u-hemicontinuous if for all x, y ∈ K and λ ∈ [0,1] the mapping λ 	→∑

i∈I 〈Fi(x +λz), zi〉 with z=y −x is upper semicontinuous at 0, where
zi is the ith component of z.

LEMMA 4.2. If {Fi}i∈I is u-hemicontinuous and relatively pseudomanotone,
then it is relatively maximal pseudomonotone.
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Proof. Suppose that for all x, y ∈K and for all u∈F(x) we have
∑

i∈I

〈ui, yi −xi〉∈−intC.

Set z= ty + (1− t)x for 0<t �1, that is z∈ ]x, y]. Then by u-hemicontinuity
of {Fi}i∈I , there exists a δ >0 such that

∑

i∈I

〈wi, yi −xi〉∈−intC, ∀w ∈F(z),and t ∈ (0, δ).

Since t (yi −xi)= zi −xi for each i ∈ I , we have
∑

i∈I

〈wi, zi −xi〉∈−intC, ∀wi ∈Fi(z), i ∈ I and z∈ ]x, y].

This completes the proof.

Let W and Z be topological vector spaces and U a subset of W . Let G:
U →2L(W,Z) and g:U →L(W,Z). Recall that g is a selection of G on U if
g(x)∈G(x) for all x ∈U . Furthermore the function g is called a continuous
selection of G on U if it is continuous on U and a selection of G on U .

For results on the existence of a continuous selection we refer to [15, 19,
18] and references therein.

LEMMA 4.3. For each ∈ I if fi is a selection of Fi on K and x̄ ∈ K is a
solution of (VQVIP), then (x̄, ū) is a solution of (GVQVIP) with ūi ∈fi(x̄)

for all i ∈ I .

Proof. Assume that x̄ ∈K is a solution of (VQVIP). Then x̄ ∈A(x̄) and
∑

i∈I

〈fi(x̄), yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I.

Let ūi =fi so that ū=f (x̄). For each i ∈ I since fi is a selection of Fi , we
have ū∈F(x̄) such that x̄ ∈A(x̄) and

∑

i∈I

〈ūi , yi − x̄i〉 /∈−intC, ∀yi ∈Ai(x̄), i ∈ I.

Hence (x̄, ū) is a solution of (GVQVIP).

LEMMA 4.4. For each i ∈ I let fi :K →L(Xi, Y ) be a selection of a multi-
valued map Fi : K → 2L(Xi,Y ) on K. If the family {Fi}i∈I of multivalued maps
is relatively maximal pseudomonotone, then {fi}i∈I is also relatively maximal
pseudomonotone.
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THEOREM 4.1. For each i ∈ I , let Xi be a real topological vector space, Y
and C be the same as defined above, Ki nonempty convex subset of Xi and
K =∏

i∈I Ki . Further assume that

(i) {Fi}i∈I is a relatively maximal pseudomonotone multivalued map;
(ii) for each i ∈ I there exists a selection (not necessarily continuous) fi of

Fi on K;
(iii) there exist a nonempty, closed and compact set D of K and ỹ ∈D such

that
∑

i∈I 〈fi(x), ỹi − x̄i〉∈−intC f or all x ∈K\D with ỹ ∈A(x).

Then the solution set K
g
s of (GVQVIP) is nonempty. Furthermore (SGVQ-

VIP) has a solution.

Proof. By assumption (ii) for each i ∈ I there is a function fi such that
fi(x)∈Fi(x) for all x ∈K. Lemma 4.4 implies that {fi}i∈I is relatively max-
imal pseudomonotone. Then all the conditions of Theorem 3.1 are satisfied
and therefore there exists a solution x̄ ∈K of (VQVIP). For each i ∈ I let
ūi =fi(x̄) so that ūi =fi(x̄)∈Fi(x̄). Then by Lemma 4.3 (x̄, ū)∈K

g
s , where

ū= (ūi)i∈I . In view of Lemma 4.1. (x̄, ū) is a solution of (SGVQVIP).

THEOREM 4.2. For each i ∈ I let Xi be a real topological vector space, Y
and C be as defined above, Ki a nonempty convex subset of Xi and K =∏

i∈I Ki Furthermore assume that

(i) {Fi}i∈I is a relatively maximal pseudomonotone multivalued map;
(ii) for each i ∈ I there exists a continuous selection fi of Fi on K;

(iii) there exist a nonempty, closed and compact set D of K and ỹ ∈D such
that

∑
i∈I 〈fi(x), ỹi −xi〉∈−intC f or all x ∈K\D with ỹ ∈A(x).

Then the solution set K
g
s of (GVQVIP) is nonempty. Furthermore (SGVQ-

VIP) has a solution.

Proof. It follows from condition (ii) that for each i ∈ I there is a con-
tinuous function fi such that fi(x) ∈ Fi(x) for all x ∈ K. Therefore by
Lemma 4.4 {fi}i∈I is relatively pseudomonotone and continuous, and so it
is, relatively pseudomonotone and hemicontinuous. Then all conditions of
Corollary 3.1 are satisfied, and therefore there exists a solution x̄ ∈ K of
(VQVIP). For each i ∈I let ūi =fi(x̄)∈Fi(x̄). Then Lemma 4.3 implies that
(x̄, ū)∈K

g
s , where ū= (ūi)i∈I . In view of Lemma 4.1 (x̄, ū) is a solution of

(SGVQVIP).

Now we provide an example of a relatively maximal pseudomonotone
multivalued map which has a selection but not a continuous selection.
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EXAMPLE 4.1. Let F : [0,∞)→2R be defined by

F(x)=
{ {0} if x =0

[1+x,∞) if x >0.

Then F is relatively maximal pseudomonotone, but F does not have any
continuous selection since any selection of F is discontinuous at 0.

REMARK 4.2. If I is a Singleton, then Theorem 4.2 extends Theorem 3.1
[20] (for a fixed cone) to generalized vector quasi-variational inequalities in
a more general setting and for a noncompact set.

In view of Lemma 4.2 we have the following result.

COROLLARY 4.1. For each i ∈ I let Xi be a real topological vector space,
Y and C be as defined above, Ki a nonempty convex subset of Xi and K =∏

i∈I Ki . Furthermore assume that

(i) {Fi}i∈I is u-hemicontinuous and relatively pseudomonotone;
(ii) for each i ∈ I there exists a selection (not necessarily continuous) fi of

Fi on K;
(iii) there exist a nonempty, closed and compact set D of K and ỹ ∈D such

that
∑

i∈I 〈fi(x), ỹi − x̄i〉∈−int C f or all x ∈K\D with ỹ ∈A(x).

Then the solution set K
g
s of (GVQVIP) is nonempty. Furthermore (SGVQ-

VIP) has a solution.

REMARK 4.3. Note that we did not provide an answer to the follow-
ing open question posed by Yang and Yao [20]: for each i ∈ I , if Fi is a
u-hemicontinuous multivalued map, then under what conditions does there
exist a hemicontinuous function fi such that fi(x) ∈ Fi(x) for all x ∈ K?
But we did establish the existence of a solution of (GVQVIP) and (SGVQ-
VIP) which include generalized vector variational inequality problems as
a special case under the relative pseudomonotonicity and u-hemicontinuity
assumption.
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